ñeca
10 dari hampir 30 hasil pencarian terdekat untuk kata kunci ñeca oleh administrator realrecipeses.fun akan membuatmu bahagia.

Model ECA-121ZC 1-axis Inclination Sensor | Inclination ...
ECA-121ZC: ±3° (Detection width of 6°) 41,700 JPY. 383 USD. 324 EUR. BTO: STD Shipping is available immediately (on the day of order) WIP Shipping is available within 1 to 3 weeks. BTO Shipping is available within 4 to 10 weeks. NOTE: The above information shows the typical delivery time. For actual delivery time, please confirm us as it ....
From: www.sensatec.co.jp
*After you have put an item in your shopping cart, choose either [Quote] or [Order].
*For customized products or specifications, contact us using "Inquiry."
*Choose the currency from JPY, USD, or EUR.
In the case of the quote request and order, please be sure to check the Terms and Conditions.
If you have made the procedure of quote request and order, it assumes that agree to the Terms and Conditions.
The isolation of a zwitterionic initiating species for ...
The differences in reactivity among the three classes of amines with ECA can now be attributed to the initial formation of aminocyanopropionate esters for primary and secondary amines and only polymer for tertiary amines. DOI: 10.1016/S0032-3861(00)00618-2. Type ….
From: www.afinitica.com
A study was conducted to investigate the differences in reactivity between ethyl cyanoacrylate (ECA) with phosphines and amines, which contain different alkyl substituents. It was found that when an equimolar amount of dimethylphenylphosphine and ECA react, a stable zwitterion is formed. This is the first time the proposed initiating species for alkyl cyanoacrylate polymerization has been sufficiently stable to be isolated and fully characterized spectroscopically. In contrast, triphenylphoshine reacts with ECA to form polymer, regardless of the molar ratio between the monomer and initiator.
The reactivity between primary, secondary, and tertiary amines and ECA also exhibit significant differences. Tertiary amines initiate rapid ECA polymerization with a strong exotherm to produce high molecular weight polymers. In contrast, the reaction of ECA with primary or secondary amines occurs at a much slower rate resulting in low molecular weight oligomers or polymers. After a 1H NMR and IR spectroscopic study, it was demonstrated that intramolecular proton transfer occurs after the initial Michael-type addition of the primary or the secondary amine to the ECA double bond to form aminocyanopropionate esters. The differences in reactivity among the three classes of amines with ECA can now be attributed to the initial formation of aminocyanopropionate esters for primary and secondary amines and only polymer for tertiary amines.

Acute enhancing effect of a standardized extract of ...
Mar 31, 2021 · ECa 233 is the standardized extract of Centella asiatica (L.) Urban. (Apiaceae). It contains at least 85% of triterpenoid glycosides and yields neuroprotective and memory-enhancing effects. However, the exact molecules exerting the effects might be triterpenic ...ECa 233 is the standardized extract of Centella asiatica (L.) Urban. (Apiaceae). It contains at least 85% of triterpenoid glycosides and yields neuroprotective and memory-enhancing effects. However, the exact molecules exerting the effects might be triterpenic ....
From: www.ncbi.nlm.nih.gov
This study emphasizes the effectiveness of triterpenoid glycosides in ECa 233 on synaptic plasticity enhancement. Therefore, this study supported and complimented the known effects of C. asiatica extract on the enhancement of synaptic plasticity, and subsequently, learning and memory, suggesting that ECa 233 could be a promising memory enhancing agent.
The LTP magnitude of ACSF, DMSO, 10 ug/mL ECa 233, and 100 ug/mL ECa 233 groups increased from 100% to 181.26 ± 38.19%, 148.74 ± 5.40%, 273.71 ± 56.66%, 182.17 ± 18.61%, respectively. ECa 233 at the concentration of 10 µg/mL robustly and significantly enhanced hippocampal LTP magnitude. The data indicates an improvement of the hippocampal synaptic plasticity.
The brain slices obtained from 7-week-old male Wistar rats were randomly divided into 4 groups. We perfused either artificial cerebrospinal fluid (ACSF), 0.01% DMSO, 10 µg/mL ECa 233, or 100 µg/mL on brain slices, and measured the long-term potentiation (LTP) magnitude to determine the synaptic plasticity of hippocampal circuits in each group.
ECa 233 is the standardized extract of Centella asiatica (L.) Urban. (Apiaceae). It contains at least 85% of triterpenoid glycosides and yields neuroprotective and memory-enhancing effects. However, the exact molecules exerting the effects might be triterpenic acid metabolites reproduced through gut metabolism after orally ingesting C. asiatica, not triterpenoid glycosides.
To clarify and emphasize the memory-enhancing capacity of C. asiatica extract, this study aimed to elucidate the efficacy of ECa 233 on hippocampal synaptic plasticity. Here we mimicked the systemic administration of the extract by allowing direct ECa 233 perfusion on the acute hippocampal slice. We proposed that this method could eliminate drug absorption-influencing factors such as intestinal transporter, intestinal metabolism, gastric emptying time, and hepatic metabolism. This method would also exhibit the direct effect of parent compounds on neuronal tissue. Moreover, we assessed the LTP to observe synaptic plasticity, which is a necessary process that leads to hippocampal synapse strengthening and is also the basic mechanism of learning-and-memory formation.
In addition to the effect from the gut metabolism, the low oral bioavailability of the extract (Anukunwithaya et al. 2017b) might affect the action of ECa 233. The number of active constituents entering the brain might be lower than the effective dose; hence, the extract might take time to generate their effects, as shown in our previous study in which the extract was given orally for a month (Boondam et al. 2019). Other studies have demonstrated that the duration of oral administration ranged from 2 weeks to 2 months (Soumyanath et al. 2012; Tabassum et al. 2013; Puttarak et al. 2017; Gray et al. 2018; Ar Rochmah et al. 2019). In contrast, intravenous ECa 233 shows 100% bioavailability, and it can cross the blood–brain barrier, as observed in brain tissue accumulation (Anukunwithaya et al. 2017b; Khemawoot et al. 2018; Boondam et al. 2019). Thus, ECa 233 perfusion into the acute hippocampal slices will show the direct action of ECa 233 on the hippocampal neurons in which their synaptic plasticity is crucial for learning and memory.
However, the mechanisms of C. asiatica extract, especially the exact active compounds of the extract that produce the memory-enhancing effect, remain unclear. Although C. asiatica extract mainly contains triterpenoid glycosides with very few triterpenic acid metabolites, namely, madecassic acid and asiatic acid (<1% in ECa 233), β-glycosidases from gut microbiota metabolize the triterpenoid glycosides to triterpenic acid metabolites after the oral administration of the extract (Anukunwithaya et al. 2017b; Khemawoot et al. 2018). In rats, triterpenic acid metabolites were largely found in faeces (approx. 50% of the consumed doses of the parent compounds) but scarcely in plasma and organ tissues (Anukunwithaya et al. 2017b). In humans, a large amount of these metabolites was found in the plasma according to LC-MS/MS system analysis (Songvut et al. 2019). Some studies of C. asiatica extract have shown that triterpenic acid metabolites have an effect on learning and memory via the neuroprotective and anxiolytic activities (Nasir et al. 2011; Sirichoat et al. 2015; Chaisawang et al. 2017). However, the exact active compounds that produce the memory-enhancing effect remain inconclusive.
The standardized extract of Centella asiatica (L.) Urban. (Apiaceae), known as ECa 233, is a white to off-white powder extract containing at least 85% of triterpenoid glycosides, of which 53.1% is madecassoside and 32.3% is asiaticoside. The remaining 15% consists of triterpenoid saponins, of which less than 1% are triterpenic acid metabolites – madecassic acid and asiatic acid (Anukunwithaya et al. 2017a). ECa 233 provides neuroprotection in both in vitro and in vivo studies. It also enhances the neurite outgrowth of neuroblastoma cells via the MEK/ERK and PI3K/Akt pathways (Wanakhachornkrai et al. 2013). Furthermore, ECa 233 promotes the survival of dopaminergic neurons in the rotenone-induced parkinsonian rats via its antioxidant activities (Teerapattarakan et al. 2018). In our recent study, 30 mg/kg dose of ECa 233 significantly enhanced memory retention of healthy normal rats. The improved behavioural performance was in line with the increase of synaptic-related proteins in the hippocampus (e.g., NR2A and NR2B subunits of N-methyl-d-aspartate [NMDA] receptor, postsynaptic density 95 [PSD-95], brain-derived neurotrophic factor [BDNF], and tyrosine kinase B [TrkB]) and of the late phase of hippocampal long-term potentiation (LTP) magnitude. Thus, the mechanism of synaptic plasticity enhancement by ECa 233 might be accounted by the activation of BDNF/TrkB and NMDAR signalling cascades (Boondam et al. 2019).
Data are expressed as the mean ± SEM. Reported ‘n’ refers to the number of hippocampal slices. The results of the I-O curve were statistically evaluated using one-way analysis of variance (ANOVA), followed by Fisher’s least-significant difference (LSD) post hoc test. Moreover, the results of hippocampal LTP magnitude were statistically evaluated using both one-way and two-way ANOVA, followed by Fisher’s LSD post hoc test. All statistical data were analysed using IBM SPSS 21 (IBM, Armonk, NY, USA). Statistical significance was represented by p < 0.05.
The hippocampal LTP is a cellular model of the synaptic plasticity that represents hippocampal synapse strengthening, which is the basic mechanism of learning-and-memory formation. The stimulus intensity of the half-maximal fEPSP amplitude determined from the I-O curve of each slice was used on that hippocampal slice throughout the experiment. Recordings were still made in response to a single constant current stimulation once every 30 s. After 10 min of direct perfusion at approximately 1.5 mL/min with a tested substance (ACSF, 0.01% DMSO, 10 µg/mL ECa 233 in 0.01% DMSO, or 100 µg/mL ECa 233 in 0.01% DMSO), we recorded the baseline activity for 20 min. To induce LTP, we delivered high-frequency stimulation (HFS) containing two trains of tetanic stimulation (100 Hz of 100 pulses) of the same stimulus intensity and continually recorded the neuronal activity for 60 min (LTP phase). Thereafter, we reverted the solution to ACSF and continually recorded the activity for 15 min (washed-out phase). Next, we calculated the peak slope of the rising phase of the fEPSPs (1 ms duration). illustrates the experimental protocol.
We used an input-output (I-O) protocol to determine the basal synaptic transmission for each slice. Recordings were made in response to a single constant current stimulation once every 30 s. Furthermore, we varied the intensity (30–300 μA) to gradually adjust stimulus intensities, which were then applied to the Schaffer collateral commissural fibres. The fEPSPs were recorded at the dendritic layer of the CA1 area.
To record extracellular field excitatory postsynaptic potentials (fEPSPs), we filled an extracellular recording electrode with ACSF and positioned it at the dendritic layer of the hippocampus’ CA1 area. We then placed a tungsten stimulating electrode 1000 μm away from the recording electrode at the same dendritic layer to activate the Schaffer collateral commissural fibres. The fEPSPs were recorded using PowerLab equipment and LabChart 7 software (AD Instruments, Dunedin, New Zealand).
The rats were deeply anaesthetized with isoflurane until they were unconscious, followed by quick decapitation using a guillotine. The brain was taken out rapidly and transferred immediately into 4 °C oxygenated artificial cerebrospinal fluid (ACSF; 124 mM NaCl, 3 mM KCl, 1.25 mM NaH2PO4, 1.30 mM MgSO4-7H2O, 26 mM NaHCO3, 10 mM d-glucose, and 2.4 mM CaCl2-2H2O) with sucrose solution. We then sectioned 350 μm thick transverse hippocampal slices, stored them in a nylon-mesh interface-type tissue chamber, and incubated them in carbogen (95% O2 and 5% CO2)-saturated ACSF at room temperature for at least 1 h before electrophysiological recording.
We utilized healthy male Wistar rats aged 7 weeks and weighed 180–210 g. The animals were purchased from the National Laboratory Animal Centre, Mahidol University in Thailand. All rats were housed under the conditions of controlled humidity, temperature, and light (12 h day/night cycle) with free access to water and murine chow, consistent with the guideline for animal care and use in a scientific study. The animal ethics committee of the Faculty of Medicine Siriraj Hospital in Mahidol University had approved our study before the experimentation (approval number: COA 001/2561).
The hippocampal postsynaptic response was evaluated by determining the LTP magnitude, which is a popular model for examining synaptic plasticity. Following LTP induction, the perfusion of 10 µg/mL concentration of ECa 233 significantly enhanced the CA1 postsynaptic response. Compared with that by the other substances, the response further elevated significantly by ECa 233 (10 µg/mL) after being washed out (). The initial significance was observed at 65 min after the perfusion (35 min after HFS) [273.71 ± 56.66%, F(3,15) = 3.734, p = 0.042]. The LSD post-hoc test revealed that only the fEPSP level of the 10 µg/mL ECa-treated hippocampal slices robustly increased (p = 0.037, p = 0.008, p = 0.041) compared with the fEPSP levels of the ACSF-treated (181.26 ± 38.19%), 0.01% DMSO-treated (148.74 ± 5.40%), and 100 µg/mL ECa-treated (182.17 ± 18.61%) hippocampal slices. In addition, a significant interaction existed between the effects of phase and the experimental group on fEPSP slopes as follows: [group effect: F(3,48) = 186.082, p = 0.000; phase effect: F(2,48) = 139.463, p = 0.000; group x phase interaction: F(6,48) = 49.672, p = 0.000] (). Throughout the recording time, only the 10 µg/mL ECa-treated hippocampal slices significantly exhibited the gradual increase of the fEPSP response (p = 0.000). Thus, ECa 233 at 10 µg/mL concentration significantly enhanced the synaptic plasticity. Furthermore, ECa 233 acted locally and had a rapid onset once present in the area, gradually increasing the synaptic response. Although ECa 233 was already removed, its action persisted further, suggesting that once the machinery has been triggered, the effect can persist and does not require the active molecules of ECa 233 to maintain the effect.
The basal synaptic transmission was evaluated by the I-O curve. The gradual increment of stimulus intensity would enhance the synaptic responses. The I-O curve recordings () indicated that ECa 233 did not alter the basal excitatory synaptic transmission at any concentrations compared with that in each group [F(3,11) = 0.730, p = 0.562]. Hence, ECa 233 did not alter the efficacy of electrical impulse transmitted by hippocampal neurons at the basal state. Therefore, these results could extrapolate to the LTP results that the enhanced expression of LTP was not a subsequent outcome of the increased basal neural activity.
DiscussionIn our previous in vivo study, ECa 233 had an inverted U-shaped response curve on hippocampal synaptic plasticity. The effective dose of ECa 233 (30 mg/kg) enhanced the expression of plasticity-related proteins, the hippocampal LTP, and also the memory retention, as observed in the behavioural test (Boondam et al. 2019). However, the effect of orally administered C. asiatica extract depends on many absorption-influencing factors, such as intestinal metabolism and efflux transporters (Anukunwithaya et al. 2017a).
Madecassoside, which is an active constituent of ECa 233, also acts as a substrate for P-glycoprotein and multidrug-resistant protein 2, mediating the drug efflux and reducing drug absorption, respectively (Anukunwithaya et al. 2017a). In humans, the extract is metabolized to triterpenic acid metabolites by β-glycosidases from gut microbiota, which directly hydrolyse the glycosidic bonds of plant glycosides (Rowland et al. 2018); therefore, the constituents derived from the extract in the human blood circulation were triterpenoid glycosides as the parent compounds (madecassoside and asiaticoside), and triterpenic acid metabolites (madecassic acid and asiatic acid). Following the oral administration of ECa 233 at 250 mg/kg dose for 7 days, the Cmax ratio in plasma between madecassoside and madecassic acid was approximately 1:10, whereas that between asiaticoside and asiatic acid was approximately 1:9; thus, triterpenic acid metabolites have considerably higher plasma concentrations than the parent compounds in humans (Songvut et al. 2019).
Furthermore, the triterpenic acid metabolites have neuroprotective and anxiolytic effects on learning and memory (Nasir et al. 2011; Sirichoat et al. 2015; Chaisawang et al. 2017), suggesting that the active constituents producing the learning-and-memory effect might be triterpenic acid metabolites instead of triterpenoid glycosides, which are the main constituents of C. asiatica extract. Hence, we wanted to confirm the exact active constituents by demonstrating and emphasizing the potency of triterpenoid glycosides in ECa 233 (the standardized C. asiatica extract containing 85% of triterpenoid glycosides and <1% of triterpenic acid metabolites) on synaptic enhancement. This study investigated the hippocampal synaptic enhancement by directly perfusing ECa 233 on acute hippocampal slices. This method eliminates absorption-influencing factors and gut metabolism and also reduces the period of ECa 233 onset; thus, we can examine the direct potency of ECa 233.
Moreover, this direct perfusion method aimed to delineate that the main active compounds of ECa 233 acting on the hippocampus are triterpenoid glycosides (madecassoside and asiaticoside), not their metabolites. We selected the tested concentrations of ECa 233 from an in vitro study demonstrating the neuritogenic effects of ECa 233 on human neuroblastoma cells (Wanakhachornkrai et al. 2013).
The communication between neurons requires normal basal synaptic transmission, which starts when Ca2+ ions influx into the cells, triggering the release of neurotransmitters from the presynaptic membrane. Memory formation requires the release of glutamate, which is a major excitatory neurotransmitter in the nervous system. These glutamates bind to specific receptors such as ionotropic glutamate receptor (NMDAR and AMPAR) and metabotropic glutamate receptor (mGluR) on the postsynaptic membrane. After binding, excitatory postsynaptic potentials (EPSPs) are generated. The binding of glutamate to NMDARs also induces Ca2+-dependent signalling cascades, which mediate many neurotrophic protein transcriptions and synaptic plasticity (Sweatt 2010). As mentioned, the LTP model is generally used to study synaptic plasticity (Holscher 1999), representing the mechanism of the episodic memory encoding and consolidation in the hippocampus (Clopath 2012). Therefore, LTP magnitude enhancement indicates the increased capability of hippocampal synapses to encode and consolidate information, which is important for learning and memory.
According to our study results, the basal excitatory synaptic transmission was not altered by the direct perfusion of ECa 233 on acute hippocampal slices at any concentrations, and only ECa 233 at 10 µg/mL concentration enhanced the hippocampal LTP magnitude after HFS; even after ECa 233 removal, the LTP magnitude further increased significantly. The pattern of ECa 233-induced LTP is similar to that of BDNF-induced EPSP responses (Kang et al. 1997; Bramham and Messaoudi 2005); it is also similar to the pattern of LTP after the chronic ECa 233 treatment in normal rats in our previous study (Boondam et al. 2019). Upregulation of several NMDAR subunits, PSD-95, p-CaMKII, p-PKACβ, p-CREB, BDNF, and TrkB, after the administration of C. asiatica extract, including its parent compounds, could promote the expression of hippocampal LTP and synaptic formation (Lin et al. 2004; Yin et al. 2015; Boondam et al. 2019). Especially, the upregulation of NMDAR subunits is necessary for LTP formation in the Schaffer collateral pathway of the hippocampus (Tsien et al. 2012). Moreover, low dosages of C. asiatica extract elevated the expression of AMPAR subunit, which is essential for stabilizing the synaptic strength (Binti Mohd Yusuf Yeo et al. 2018). After TrkA or TrkB receptor activation, both asiaticoside and madecassoside had more potency for the sustained activation of MEK/ERK-CREB phosphorylation and PI3K/Akt pathways than asiatic acid and madecassic acid (Nalinratana et al. 2018). Molecular activation promoted the neurite outgrowth, which is a necessary process for memory enhancement.
When the activity of asiaticoside is prolonged, the glutamate release at the presynaptic membrane might be altered, further mediating the synaptic transmission. The long-term asiaticoside treatment in mice promotes the upregulation of many hippocampal proteins, such as synapsin I-a presynaptic protein (which mediates neurotransmitter release), PSD-95, and BDNF (a neurotrophic factor regulating the expression of many synaptic proteins) (Luo et al. 2015). Conversely, asiatic acid does not alter the synaptic transmission and the hippocampal LTP (Mook-Jung et al. 1999). It also suppresses glutamate release at the presynaptic membrane by inhibiting the influx of Ca2+ ions (Lu et al. 2019). However, the memory-enhancing effect of asiatic acid might be associated with other mechanisms, such as the antioxidant mechanism.
In the present study, the synaptic response after ECa 233 administration still exhibited an inverted U-shaped response curve. At a high concentration level, the synaptic response decreased. This response might be related to and explained by the anxiolytic effect of ECa 233, considering that C. asiatica extract and ECa 233 have demonstrated the anxiolytic effect dose-dependently (Wijeweera et al. 2006; Awad et al. 2007; Wanasuntronwong et al. 2012). Thus, the higher doses will express more anxiolytic effect. Additionally, C. asiatica extract can act as a GABA agonist and promote the activity of glutamic acid decarboxylase, an enzyme associated with GABA synthesis (Awad et al. 2007). The increased GABA activity by anxiolytic drugs, such as benzodiazepines, could inhibit hippocampal LTP (del Cerro et al. 1992).
Moreover, the oral administration of C. asiatica extract depends on many absorption-influencing factors. The effects of ECa 233 could possibly be related to some absorption-influencing factors, such as intestinal metabolism and efflux transporters (Anukunwithaya et al. 2017a). As observed, the oral administration of ECa 233 demonstrated a slow onset of action, possibly because of its poor oral bioavailability and the large molecular weight of its parent compounds (Anukunwithaya et al. 2017b; Khemawoot et al. 2018); hence, the distribution of the compounds to various organs might be time dependent. According to a pharmacokinetic study, 4 h after ECa 233 administration, the distribution of the parent compounds in the brain tissues by the oral route was slightly lower than that by the IV route (Anukunwithaya et al. 2017b). Moreover, the elimination of half-life of the parent compounds after oral administration was shorter than that after IV administration (Khemawoot et al. 2018). The direct perfusion of ECa 233 on acute hippocampal slices would demonstrate the exact potency of ECa 233 on the brain tissues.
Our study could confirm and emphasize that ECa 233 has a strong synaptic plasticity-enhancing effect. The potency of the ECa 233 effect most likely depends on the action of parent compounds (triterpenoid glycosides). Both of the triterpenoid glycosides, namely, asiaticoside and madecassoside, could play a role in a nootropic activity because both constituents have not been metabolized to derivative forms. Both of them enhance the hippocampal LTP, which is the basic characteristic of memory formation. However, the BDNF-TrkB downstream signalling pathways still need to be confirmed as an underlying mechanism for synaptic enhancement ().
Electrostatic Chuck Power Supply | ECA | Matsusada Precision
Matsusada Precision product Electrostatic Chuck power supply ECA series - This Electrostatic Chuck Power Supply is available for unipolar (2ch) or bipolar systems..
From: www.matsusada.com
Aluminum Capacitors
ECA 33 μF / 25 V, ± 20 %, size 5 x 5.3 mm Ordering code: MALSECA00BC233EARK For Standard Packaging Quanti ty (SPQ) and Minimum Order Quantity (MOQ) please refer to our price list or contact customer service. DIMENSIONS in millimeters CASE SIZE CODE.
From: www.vishay.com
Fees & Registration | ECA
PhD Student 150.-. CHF (± 155 US$/135 €) Regular (by 15 April 2017) Faculty 330.-. CHF (± 345 US$ / 300 €) PhD Student 210.-. CHF (± 220 US$ / 190 €) The fees include all conference material, lunches, coffee breaks and welcoming reception on the first evening of the conference. A conference dinner is planned at an extra fee of 50.-.Conference fees Early bird (by 28 February 2017) Faculty 260.- CHF (± 270 US$/235 E) PhD Student 150.- CHF (± 155 US$/135 E) Regular (by 15 April 2017) Faculty 330.- CHF (± 345 US$ / 300 E) PhD Student 210..
Keyword: eca, european, conference, argumentation, rhetoric, informal, logic, linguistics, discourse, analysis
From: ecargument.org
La bambola di carne La Muà ±eca Ernst Lubitsch 1919
La bambola di carne (Die Puppe) è un film muto del 1919 diretto da Ernst Lubitsch. Si tratta di una fiaba dal tono scanzonato, di allegra bizzarria e di simu....
From: www.youtube.com
ECA 4000 - HEIDENHAIN
Product Information ECA 4000 11/2016 TTR ECA 4400 scale drum Steel drum therm 10.4 · 10 –6 K–1 70 mm 80 mm 120 mm 120 mm 150 mm 180 mm 270 mm 425 mm 512 mm 104.63 mm 127.64 mm 148.2 mm 178.55 mm 208.89 mm 254.93 mm 331.31 mm 484.07 mm 560.46 mm ±0.88° ±0.44° ±0.22° ±0.11°.
From: product.heidenhain.de
ECA-1CM332 Panasonic Electronic Components | Capacitors ...
Order today, ships today. ECA-1CM332 – 3300 µF 16 V Aluminum Electrolytic Capacitors Radial, Can - 2000 Hrs @ 85°C from Panasonic Electronic Components. Pricing and Availability on millions of electronic components from Digi-Key Electronics..
From: www.digikey.com
Product Information ECA 4000 V
Product Information ECA 4000 V 07/2018 3 AK ECA 4410 V AK ECA 4490 F V AK ECA 4490 M V AK ECA 4490 P V EnDat 2.2 Fanuc Serial Interface; i Interface Mitsubishi high speed interface Panasonic Serial Interface EnDat22 Fanuc05 Mit03-4 Pana01 16 MHz/ 5 µs – Cable, 1 m or 3 m, with 15-pin D-sub connector (female).
From: product.heidenhain.de
ECA-1CM100I Panasonic Electronic Components | Capacitors ...
Order today, ships today. ECA-1CM100I – 10 µF 16 V Aluminum Electrolytic Capacitors Radial, Can - 2000 Hrs @ 85°C from Panasonic Electronic Components. Pricing and Availability on millions of electronic components from Digi-Key Electronics..
From: www.digikey.com
Category 6A U/FTP EuroClass Eca Cables
6.8 45.0 405 x 265 x 405 14.7 . 27 or 18 †† ’D’ denotes Duplex Cable †Also available in non-standard colors . COUNTRY OF ORIGIN COO: United Kingdom “Leviton is dedicated to designing, developing and manufacturing sustainable high-performance structured cabling and speciality cabling solutions.. The information contained in this document is valid and correct at the time ….
From: www.levitonemea.com
Product Information ECA 4000 - Groupe DETEC
4 Product Information ECA 4000 122015 ECA 4412, ECA 4492 Dimensions = Mounting options = Bearing = Internal mating diameter (shaft) 1 = Permissible axial motion of measured shaft: ≤ ±0.4 mm 2 = Not permitted for drum fastening 3 = Optical centerline and mark for 0° position 4 = Positive direction of rotation.
From: www.groupedetec.eu
Bacharach ECA 450 Datasheet
ECA 450 Combustion Ef ... Oxygen ± 0.3% O2 on practical concentration of fl ue gas Stack or Flue Gas Temp. ± 4°F between 32 and 255°F (± 2°C between 0 and 124°C) ± 6°F between 286 and 480°F (± 3°C between 125 and 249°C) ± 8°F between 481 and 752°F.
From: www.mybacharach.com
Amazon.com
Hello, Sign in. Account & Lists Returns & Orders. Cart.
From: www.amazon.com
muñeca 01 - youtube.com
piezas.
From: www.youtube.com
Datasheet: GD102413v12
A U/FTP Zone EuroClass Eca Cables Datasheet: GD102413v12 . APPLICATION. Leviton Zone cables exceed the Category 6A performance standards in a channel of up to 70m in length. They are specified to 500MHz and are suitable for use in all Class E. A. structured wiring cable systems. Zone cables have been designed specifically for.
From: www.levitonemea.com

Watch Muñeca Brava Online | Full Series: Every Season ...
Watch Muñeca Brava Online: The complete guide by MSN. Full Series: every season & episode. Click here and start watching Muñeca Brava in seconds.Watch MuA±eca Brava Online: The complete guide by MSN. Full Series: every season & episode. Click here and start watching MuA±eca Brava in seconds..
From: www.msn.com
ECA-DIN - miinet.com
ECA-DIN dimensions. Figure 2. The ECA comes equipped with two alarm outputs, and will power a transmitter using the –TX option. ECA ALARM NO1 CM1 NC1 TRIP DEAD BAND DC DCC GND NO2 CM2 NC2 TX +IN –IN TRIP DEAD BAND A B DUAL ALARM RECEIVER POWER 2-WIRE XMITTER 4-20mA 109.7mm (4.32 in) ECA ALARM NO1 CM1 NC1 TRIP DEAD BAND 40mm.
From: www.miinet.com
ECA 4000 V - HEIDENHAIN
4 Product Information ECA 4000 V 07/2018 ECA 4412 V, ECA 4492 V Dimensions = Mounting options = Bearing = Mating diameter (shaft) 1 = Permissible ….
From: www.heidenhain.de
Product Information ECA 4000 - HEIDENHAIN
Product Information ECA 4000 09/2016 ECA 4412, ECA 4492 Dimensions = Mounting options = Bearing = Mating diameter (shaft) 1 = Permissible axial motion of measured shaft: ±0.4 mm 2 = Not permitted for drum fastening 3 = Optical centerline and mark for 0° position 4 = Positive direction of rotation.
From: www.heidenhain.fr
Enbeam OM3 Multimode 50/125 8 Core Armoured CST Fibre ...
CST Fibre Optic Cable Loose Tube Eca - Blue Item Code: 205-281 Diameter Cladding Non-circularity ≤ 1 % ≤ 1 % ≤ 1 % ≤ 1 % Coating Diameter (Coloured) 250 ± 15 µm 250 ± 15 µm 250 ± 15 µm 250 ± 15 µm Standards Applicable Standard Subject IEC 60332-1-2:2004 Tests on electric and optical fibre cables under fire conditions..
From: documents.excel-networking.com
Search: pastas la muà ±eca Logo Vectors Free Download
Search results for pastas la muà ±eca logo vectors. We have 3698 free pastas la muà ±eca vector logos, logo templates and icons. You can download in .AI, .EPS ....
From: seeklogo.com
Product Information - HEIDENHAIN
Product Information ECA 4000 01/2021 ECA 4412, ECA 4492 (scale drum without centering collar) Dimensions , = Mounting options = Bearing W = Mating diameter (shaft) 1 = Permissible axial motion of measured shaft: ≤ ±0.4 mm 2 = Not permitted for drum fastening 3 = Optical centerline and mark for 0° position.
From: www.heidenhain.co.jp
ECA-1HM471 - Electrolytic Capacitor, 470 µF, 50 V, ± 20% ...
Buy ECA-1HM471 - Panasonic - Electrolytic Capacitor, 470 µF, 50 V, ± 20%, Radial Leaded, 2000 hours @ 85°C, Polar. Newark offers fast quotes, same day shipping, fast delivery, wide inventory, datasheets & technical support..
From: www.newark.com
ECA-1VHG332 - Electrolytic Capacitor, 3300 µF, 35 V, ± 20% ...
Buy ECA-1VHG332 - Panasonic - Electrolytic Capacitor, 3300 µF, 35 V, ± 20%, Radial Leaded, 2000 hours @ 105°C, Polar. Newark offers fast quotes, same day shipping, fast delivery, wide inventory, datasheets & technical support..
From: www.newark.com
Enbeam OS2 Singlemode Fibre Optic Cable Loose Tube 8 …
Enbeam OS2 Singlemode Fibre Optic Cable Loose Tube 8 Core 9/125 LSZH Eca Blue, part of a huge range of OS2 fibre optic cables fully stocked at Mayflex. Excel corrugated steel tape (CST) OS2 9/125µm armoured loose tube optical fibre cables have been designed specifically for ... Torsion ± 180 ⁰ ....
From: documents.excel-networking.com
ECA ACARA Foundations Paper FINAL
The coll±ordive natureofthisventurea rmsthe fæt thà qudity ærly childhood practice by the ELF did founddionsfor gudentg with the Augrdian Qrriculum. The desribeskey connections the EYE- Orriculum and families thd there isa viSon for a-Id laming acrosthe varied geographic, politicd a-Id in
ECA-2GHG3R3 - Electrolytic Capacitor, 3.3 µF, 400 V, ± 20% ...
Buy ECA-2GHG3R3 - Panasonic - Electrolytic Capacitor, 3.3 µF, 400 V, ± 20%, Radial Leaded, 2000 hours @ 105°C, Polar. Newark offers fast quotes, same day shipping, fast delivery, wide inventory, datasheets & technical support..
From: www.newark.com
Parallel NOR Flash Embedded Memory - Arrow
± 128-word (256-byte) block for permanent, secure identification ± Programmed or locked at the factory or by the customer · JESD47-compliant ± Data retention: 20 years (TYP) · Package ± 56-pin TSOP, 14 x 20mm (JS) ± 64-ball LBGA, 11 x 13mm (PC) ± 56-ball VFBGA, 7 x 9mm (PN) · RoHS-compliant, halogen-free packaging · Operating temperature.
From: static6.arrow.com